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Introduction

Hydrophobic organic contaminants (HOC): 

• Partition among different environmental phases - 

persist in the environment  

• Strong bioaccumulation potential

• Pose threats to human and ecological health even at 

trace concentrations of pg-ng/L.

Passive sampling:

• Allows measurement of the freely dissolved 

concentrations (thermodynamic driving force 

for bio uptake).

• Time averaged measurement.
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Equilibrium Passive Samplers and PRC Correction

Polyethylene (PE)

Polydimethylsiloxanes (PDMS) 

Polyoxymethylene (POM)

𝐶𝑝𝑠(𝑡∞) = 𝐾𝑝𝑠−𝑤𝐶𝑤

Fractional loss of  Performance Reference 

Compound (PRC) from passive sampler to 

surrounding medium

Actual fractional uptake of target PCB 

analyte from surrounding medium to 

passive sampler

Fractional uptake of target analyte corrected 

for non-equilibrium (1-fractional PRC loss) 
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Existing Knowledge Gaps
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Limited theoretical understanding of mass 

transfer dynamics in equilibrium passive 

samplers under fluctuating ambient 

concentrations in surface water.

Comparison of Diffusion and First Order 

Model for understanding the mass transfer 

dynamics in a single-phase equilibrium passive 

sampler like PE for time integrative 

measurement for surface water measurements.



First-Order

Assumption:

𝑘𝑎𝑏𝑠= 𝑘𝑑𝑒𝑠= 𝑘𝑒 (empirical term)

Fick’s Diffusion

Models to simulate exchange kinetics

dxPE dxWAT

Sampler WBL

𝐷𝑝𝑠
𝜕𝐶𝑝𝑠

𝜕𝑥
= 𝐷𝑊

𝜕𝐶𝑊

𝜕𝑥
 

𝐶𝑝𝑠 = 𝐾𝑝𝑠−𝑤𝐶𝑤 

 

𝜕𝐶𝑠

𝜕𝑡
= 𝐷𝑝𝑠

𝜕2𝐶𝑝𝑠

𝜕𝑥2  
𝜕𝐶𝑊

𝜕𝑡
= 𝐷𝑊

𝜕2𝐶𝑊

𝜕𝑥2  

x=0       x=L      x=L+b     

𝑑𝐶′𝑝𝑠

𝑑𝑡
= 𝑘𝑎𝑏𝑠𝐶𝑤 − 𝑘𝑑𝑒𝑠𝐶𝑝𝑠

𝑘𝑎𝑏𝑠

𝑘𝑑𝑒𝑠

Sampler WBL



Research Objective

Develop the modeling framework of exchange kinetics in passive 

samplers when there is perturbation in the ambient concentration .

Knowledge gaps addressed:

• Theoretical understanding of mass transfer in PE

• Consistency of Diffusion & First-Order models.



Methodology and Approach
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Fick’s Diffusion

Methodology and Approach
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𝐂𝐩𝐬,𝐭𝐚𝐫𝐠𝐞𝐭 (𝐭)

𝑪𝒘,𝑬𝒒𝒍𝒃 =
𝐂𝒑𝐬,𝐭𝐚𝐫𝐠𝐞𝐭 (𝐭)

(𝟏 − 𝐟𝐞𝐪)𝑲𝒑𝒔−𝒘

𝑘𝑒 =
1

𝑡
ln(

𝐶𝑝𝑠,𝑃𝑅𝐶 0
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)
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𝐶′𝑝𝑠,𝑡𝑎𝑟𝑔𝑒𝑡

𝐾𝑠𝑤 1 − 𝑒−𝑘𝑒𝑡

From 

diffusion 

model

First-Order

𝑪𝒘,𝑨𝒄𝒕𝒖𝒂𝒍
 =

𝐶𝑤
𝑛𝑝

× 𝑡𝑛𝑝 + (𝐶𝑤
𝑝

× 𝑡𝑝)

𝑡

Actual Time Averaged Water Concentration 

(90 days):
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Results: Timing of Perturbation (PCB 37)
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9

=
𝟏𝟎 × 𝟖𝟎 + (𝟏 × 𝟏𝟎)

𝟗𝟎
= 𝟗𝒏𝒈/𝑳



Ambient perturbation 

starting on:

 10th day

 50th day

 70th day
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Results: Timing of Perturbation (PCB 37)

Ambient perturbation 

starting on:

 10th day

 50th day

 70th day

% cross-over/ degree of sensitivity: 

sum of % deviation around the day of 

cross-over [For PCB 37:

 ( 𝟏. 𝟎𝟐 − 𝟏 + 𝟏 − 𝟎. 𝟗𝟕 ) × 𝟏𝟎𝟎 = 

6%)]

Fractional Accuracy (over/under-

prediction):
PS based predicted water concentration

Actual time−averaged concentration

Time period of Integration: 

Approximate time after a known 

pattern of fluctuation, when a 

sampler should be retrieved to 

correctly estimate the actual time-

averaged concentration 

[PCB 37: 90-60=30 days]
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Results: Hydrophobicity of the analyte

PCB 4

Homolog Group PCB compd.
Molecular Weight 

[g/mol]
Log Dpe (cm2/s) Log Kow

Di PCB 4 223.1 -8.64 4.65

Tri PCB 37* 257.54 -8.81 5.83

Tetra PCB 73 291.99 -8.98 6.04

Hexa PCB 128 360.88 -9.33 6.74

No Fluctuation Fluctuation

PCB 4 (di)
                 PCB 37 (tri)
                 PCB 73 (tetra)           
                 PCB 128 (hexa)
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Results: Hydrophobicity of the analyte

Congeners have varying levels of over 
or underprediction trends:
➢ function of their hydrophobicity and 
➢ consequent sensitivity to 

fluctuations in ambient 
concentrations. 

Fractional Accuracy (over/under-

prediction):

PS based predicted water concentration
Actual time−averaged concentration

1
.1

1

1
.1

1

1
.1

1

1
.1

0

1
.1

0

1
.0

7

1
.0

51
.1

1

1
.1

1

1
.0

8

1
.0

2

1
.0

2

1
.0

0

0
.9

91
.1

1

1
.0

2

0
.8

8

0
.8

7

0
.8

7 0
.9

1

0
.9

5

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

PCB 4 PCB 15 PCB 22 PCB 37 PCB 47 PCB 100 PCB 128

F
re

e
ly

 d
is

so
lv

ed
 w

a
te

r 
co

n
ce

n
tr

a
ti

o
n

 o
f 

P
C

B
 c

o
m

p
o
u

n
d

s 
[n

g
/L

]

10 th 50 th 70 thActual time-averaged 

conc.  

PS predicted conc. perturbation starting on day:

12



Results: Hydrophobicity of the analyte

• The percentage cross-over for each 
congener: estimate of the sensitivity 
of the congener to the pulse (Size of 
Bubbles)

• Increasing hydrophobicity -> 
increasing time-period of integration 
-> decreasing sensitivity 
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Time period of Integration: 

Approximate time after a known 

pattern of fluctuation, when a sampler 

should be retrieved to correctly estimate 

the actual time-averaged concentration 

[PCB 37: 90-60=30 days]

% cross-over/ degree of sensitivity: 

sum of % deviation around the day of 

cross-over [For PCB 37:

 ( 𝟏. 𝟎𝟐 − 𝟏 + 𝟏 − 𝟎. 𝟗𝟕 ) × 𝟏𝟎𝟎 = 

6%)]
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Results: Sampler thickness (PCB 37) 
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Results: Comparison of mathematical models
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Results: Comparison of mathematical models
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Diffusion and First-Order produce consistent predictions 
of perturbed ambient water concentration.
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Conclusion

• Determination of time-period of integration of PCB compounds (minimum amount of time required by a compound to represent true 

ambient water concentrations: 14-15 days for a dichlorobiphenyl to 43-45 days for a hexachlorobiphenyl while using a 1 mil PE):

• Nature of perturbation

• Hydrophobicity of congener

• Thickness of passive sampler

• Consistent prediction of water concentration by Diffusion and First-Order Models.
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Conclusion

• Determination of time-period of integration of PCB compounds (minimum amount of time required by a compound to represent true 

ambient water concentrations: 14-15 days for a dichlorobiphenyl to 43-45 days for a hexachlorobiphenyl while using a 1 mil PE):

• Nature of perturbation

• Hydrophobicity of congener

• Thickness of passive sampler

• Consistent prediction of water concentration by Diffusion and First-Order Models.

• Assumptions to keep in mind:

• Real-time perturbations last for a few hours. An exaggerated version chosen for this study.

• Real measurements involve errors from correction for equilibrium and calculation of exchange rate coefficients (ke)

• Future Implications:

• Optimize choice of passive sampler properties for monitoring compounds of interest in surface water or sediment porewater, 

within a desired time frame.
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Thank You
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